Royaume du Matoc

<u>Épreuve de Maths</u>

<u>Filières : SMA - SMB</u>

<u>Coefficient : 9</u>

Durée: 4 heures

Ministère de l'Éducation Nationale De la Formation professionnelle de l'Eseignement supérieur & de la Recherche scientifique Examen National du
BACCALAURÉAT
Session Rattrapage
Juillet 2008

		& de la Recherche scientifique	
■ Exercice Numéro 1 : (03,50 points)			
		Le plan complexe est rapporté à un repère or	thonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$.
		Soit r l'application définie ainsi : r : M	$(z) \mapsto M_1(z_1).$
		avec : 2	$z_1 = \left(\frac{1 + i\sqrt{3}}{2}\right)z + \left(\frac{\sqrt{3} + i}{2}\right)$
		Soit h l'application définie ainsi : $h:M$ $avec$	$(z) \mapsto M_2(z_2).$ $\vdots z_2 = -2z + 3i$
		Soit F l'application définie ainsi : $F = h \circ$	r.
1,00		Déterminer la nature de chacune des app	lications r et h .
	2	Soient : $\Omega(i)$; $A(a)$; $M(z)$; $M^{'}(z^{\prime})$; $a \in \mathbb{C} \setminus \{i\}$.
		Soient: $B = F(A)$; $C = F(B)$; $D = F(C)$	
0,50		Montrer que : $F(M) = M' \implies z' - i = 2e$	$e^{\frac{4i\pi}{3}}(z-i)$.
0,25		Montrer que Ω est le seul point qui vérifi	$e : F(\Omega) = \Omega$.
0,75	3 a	Donner, en fonction de a , les nbrs : $b = aff(B)$	(B); $c = aff(C)$; $d = aff(D)$
0,25		\square \square \square Montrer que les points Ω ; A ; D sont colinéaires.	
0,50	C	Montrer que : $\Omega = barycentre \{ (B,4) ; (C,2) ; (D,1) \}$	
0,25		Déterminer l'ensemble des points $A(a)$ pour lesquels $D \in (l'axe \ r\'eelle)$	
	■ Exercice Numéro 2 : (04,00 points)		
		<u>Rappel</u> : $(\mathbb{R}, +, \times)$ est un corps commutatif:	$0_{\mathbb{R}}=0$; $1_{\mathbb{R}}=1.$
		On pose: $\forall (x,y) \in \mathbb{R}^2$; $x * y = x + y - 3xy$	
0,25	Ia	Vérifier que : $\forall (x,y) \in \mathbb{R}^2$; $(1-3x)(1-3y)$)=1-3(x*y).
0,75		Montrer que : $\left(\mathbb{R}\backslash\left\{\frac{1}{3}\right\};*\right)$ est un groupe	e commutatif.
	2	Soit l'application définie ainsi : φ : $\Big(\mathbb{R}\setminus\Big\{$	
0,50		Montrer que φ est un isomorphisme.	$x \mapsto 1-3x$
0,25		Montrer que : $\varphi^{-1}\left(]0,+\infty[\right) = \left]-\infty;\frac{1}{3}\right[$	
0,50		Montrer que $\left(\left] -\infty; \frac{1}{3} \right[; * \right)$ est un sous gro	((5)
	3	On pose: $\begin{cases} x^{(n+1)} = x^{(n)} * x \\ x^{(0)} = 0 \end{cases}$; $\forall n \in \mathbb{N}$;	$\forall x \in \mathbb{R} \setminus \left\{ \frac{1}{3} \right\}$

<u> Examen National du BACCALAURÉAT – Session Rattrapage 2008</u>

0.50 \square **b** En déduire $x^{(n)}$ en fonction de x et n.

Soit: $\forall (x,y) \in \mathbb{R}^2$; $x \mid y = x + y - \frac{1}{3}$

0,50 \square a Montrer que (\mathbb{R} , \mathbb{I}) est un groupe commutatif.

0.50 Montrer que (\mathbb{R} , \mathbb{I} ,*) est un corps commutatif.

■ Exercice Numéro 3 : (02,50 points)

Une urne contient 4 boules: une blanche et 3 boules rouges toutes indiscernables au toucher. On tire au hasard une boule de cette urne, On note sa couleur puis la remet à nouveau dans l'urne. On répète le même procédé jusqu'à l'obtention de deux boules successives de la même couleur puis on s'arrête. Soit X la variable aléatoire qui prend le rang où l'expérience s'est arrêtée.

1.00 \square Calculer les probabilités suivantes : p[X=2] et p[X=3].

0.75 Da Montrer que : $p[X=2k] = \frac{5}{8} \left(\frac{3}{16}\right)^{k-1}$; $k \in \mathbb{N}$

 $\boxed{0.75} \boxed{ \boxed{ }} \boxed{ \textbf{b}} \text{ Montrer que } : \quad p[X=2k+1] = \left(\frac{3}{16}\right)^k \quad ; \quad k \in \mathbb{N}$

■ Exercice Numéro 4 : (10,00 points)

I Soit f la fonction numérique définie sur l'intervalle $I = \left[\frac{-1}{2}; +\infty\right]$ par :

$$\begin{cases} f(x) = \frac{\ln(2x+1)}{x} & ; \quad \forall \ x \neq 0 \\ f(0) = 2 \end{cases}$$

Soit (C) la courbe représentative de la fonction f dans un repère orthonormé $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$ avec : $\|\vec{\imath}\| = \|\vec{\jmath}\| = 2cm$.

$$h_a(x) = \left(\ln(1+2a) - 2a\right)x^2 - \left(\ln(1+2x) - 2x\right)a^2$$

0.50 Montrer que la fonction f est continue en zéro.

0.50 **2** a Calculer $h_a(0)$ et $h_a(a)$.

En déduire que : $\exists ! b \in [0, a]$; $\frac{\ln(1+2a)-2a}{a^2} = \frac{-2}{1+2b}$

0.75 \square **b** Montrer que f est dérivable en zéro et que : f'(0) = -2.

0.50 **3a** Montrer que f est dérivable Sur $I^* = I \setminus \{0\}$, puis Montrer que :

 $\forall x \in I^*$; $f'(x) = \frac{g(x)}{x^2(1+2x)}$; $g(x) = 2x - (1+2x)\ln(1+2x)$

BACCALAURÉAT - Session Rattrapage 2008 du **National** Examen

b Montrer que : $\forall x \in I^*$; g(x) < 0. 0,50

0,25 $oxedsymbol{oxedsymbol{arepsilon}}$ En déduire la monotonie de la fonction f sur l'intervalle I .

4 Calculer puis interpréter les limites : $\lim_{x \to \left(\frac{-1}{2}\right)^+} f(x)$ et $\lim_{x \to +\infty} f(x)$ 0,50

0,50 **b** Montrer que : $\exists ! \alpha \in [1,2]$; $f(\alpha) = 1$.

0,50 \square Construire la courbe (\mathcal{C}) dans le repère $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$.

 \blacksquare On pose: $(\forall x \in I)$; $\varphi(x) = \ln(1+2x)$ et $J = [1, \alpha]$.

I A Montrer que la fonction arphi est dérivable sur l'intervalle I et que :

$$(\forall x \ge 1)$$
 ; $0 < \varphi'(x) \le \frac{2}{3}$

0.75 \square **b** Vérifier que : $\varphi(\alpha) = \alpha$ et $\varphi(J) \subseteq J$.

 \square **2** \square Soit $(u_n)_{n\in\mathbb{N}}$ la suite numérique définie ainsi :

$$\begin{cases} u_{n+1} = \ln(1+2 u_n) & ; \quad \forall n \in \mathbb{N} \\ u_0 = 1 \end{cases}$$

 \square **c** En déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente puis donner sa limite. 0,50

 \blacksquare Soit F la fonction numérique définie sur l'intervalle I ainsi :

$$F(x) = \int_0^x f(t) \, dt$$

0,50 **II** Montrer que la fonction F est dérivable sur I puis calculer f'(x).

0,25

0.50 Montrer que : $\forall x \ge 1$; $F(x) > \int_1^x \left(\frac{\ln(1+2t)}{1+2t}\right) dt$

 $\underline{0,50}$ En déduire que : $\lim_{x \to +\infty} F(x) = +\infty$

On pose : $\forall x \in \left[\frac{-1}{2}; +\infty\right[$; $\begin{cases} \tilde{F}(x) = F(x) & ; \forall x \in I \\ \tilde{F}\left(\frac{-1}{2}\right) = \ell = \lim_{x \to \left(\frac{-1}{2}\right)^+} F(x) \end{cases}$

Montrer, (par TAF), que : $(\forall x \in I)$; $F(x) - \ell > \left(x + \frac{1}{2}\right) f(x)$ 0,50

b En déduire que la fonction \tilde{F} n'est pas dérivable à droite en $\frac{-1}{2}$.